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Homework Assignment 4: due Wednesday 30 April

1. We discussed the QCD beta function, which at one-loop gives the strong coupling
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In these expressions, nf is the number of “active” quark flavors, meaning quarks with
mq < µ. Even for massless quarks, QCD dynamically generates an energy scale, ΛQCD,
which is known as “Dimensional Transmutation”. This scale is simply defined at a
given order in perturbation theory as the scale where the coupling diverges. Before
reaching this scale, of course the theory becomes non-perturbative, and so this scale
provides only a qualitative understanding of the “scale of QCD”. Qualitatively, hadrons
comprised of u, d and s quarks, whose mass is not protected by chiral symmetry (the
pions etc.), have a mass proportional to ΛQCD with corrections from the light quark
masses

mH = cHΛQCD +O(mq) (3)

which is why the proton is mp ∼ 1 GeV.

(a) Fix αS at the Z-pole. Using the one-loop running, what is ΛQCD =?

To answer this question, you need to start with the first line of Eq. (1), and run
the scale µ down through the heavy quark thresholds. At µ = mq, you match
the the coupling above and below mq where the running uses different number
of “active” flavors above and below the scale µ = mq. e.g. below MZ but above
mb, you have 5 active flavors while for µ < mb, there are only 4 active flavors.
Perform this matching and running until you find a scale at which the coupling
diverges.
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(b) What would be the value ΛQCD if mb > MZ?

(c) What would be the value ΛQCD if mb = 50 GeV?

(d) if the b-quark mass were to increase, would the mass of the proton increase or
decrease? (explain)

2. Cottingham’s Formula and the electron electromagnetic self-energy. In class, we dis-
cussed the Cottingham Formula and the nucleon electromagnetic self-energy. Here,
we will use it to determine the electron self-energy. Cottingham’s Formula is
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where the subscript R reminds us the integral must be renormalized.

(a) Derive Eq. (4b) from Eq. (4a).

(b) Starting from

Tµν(q
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this forward Compton Amplitude is crossing symmetric,

Tνµ(−q0, q2) = Tµν(q
0, q2) : (6)

Show this to be true.

(c) Use this crossing symmetry to show the scalar functions satisfy

Ti(−q0,−q2) = Ti(q
0,−q2) (7)

where the Ti(q
0,−q2) are defined for example below in Eq. (8).

(d) At leading order in QED, what is the electron forward Compton Scattering Am-
plitude?
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what are the scalar functions Ti(q
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A. what is the relation between ti and Ti?

B. what are the scalar functions ti(q
0,−q2) =?

(e) Using your determination of the forward Compton Amplitude, evaluate the self-
energy in Eq. (4b). To perform this evaluation, use Pauli-Villars with a Q2 cut-off.
Recall, Pauli-Villars replaces the photon propagator with the difference between
the photon and a heavy photon. In our Eq. (4b), this amounts to
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and to make the Q2 integral finite, we can put in a UV cutoff and add a coun-
terterm, such that our mass self-energy correction becomes
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where δM(Λ) is the counterterm needed to render the answer independent of Λ.

i. Evaluate the integral and take the large-Λ limit. What is the resulting ex-
pression for the self-energy correction including the finite and logarithmic
terms?

ii. Use the ideas of renormalization to determine the counterterm (demand the
entire answer be independent of Λ, usually done by taking ∂/∂ ln(Λ2)δMγ =
0).

iii. How does your answer compare with the answer using dimensional regular-
ization? (or compare with the answer in the literature/books)


